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Abstract—High-accuracy near-real-time satellite precipitation 

estimates (SPEs) provide an opportunity for hydrometeorologists 
to improve the forecasting of extreme events, such as flood, 
landslide, tropical cyclone and other extreme events, at the large 
scale. However, the currently operational near-real-time SPEs still 
have larger errors and uncertainties. In this study, we found that 
there exists a clear relationship of spatial plane function (SPF) 
between retrieval errors of SPEs and four crucial factors including 
topography, seasonality, climate type and rain rate. Based on this 
finding, we proposed a novel error adjustment method to correct 
the near-real-time hourly Global Satellite Mapping of 
Precipitation (GSMaP-NRT) estimates in real time. The new 
satellite precipitation dataset, namely ILSF-RT, was then inter-
compared with the latest near-real-time GSMaP product suite (i.e., 
GSMaP-NRT and GSMaP-Gauge-NRT). Verification results 
show that the proposed method can effectively reduce the retrieval 
errors of GSMaP-NRT for various terrains and rain rates over 
different seasons and climate type areas. The new ILSF-RT even 
exhibits a general improvement over the GSMaP-Gauge-NRT 
estimates. Furthermore, one important merit of the new method is 
that it can perform rather well in validation even not much 
historical data were applied as training samples in calibration, for 
example, during the generation of ILSF-RT, only 45 data pairs of 
satellite retrievals and ground observations were used for winter 
season over Chinese arid areas. However, the results of bias score 
show that the current method seems unsuitable to adjust the 
rainfall events with higher rain rates (>= 1mm hr-1), which needs 
to be further improved.  

Index Terms—Error correction, precipitation, crucial factors, 
ILSF-RT, real time, mainland China. 

I. INTRODUCTION 

 

ITH the rapid development of remote sensing technique 
in the last 20 years, the retrieval information from 

various satellite sensors becomes a reliable data source of 
obtaining areal precipitation estimates over large scales and 
even globe. Although the satellite-based precipitation estimates 
are indirect, the high frequency and broad coverage make them 
uniquely complementary to conventional rain gauge networks 
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and weather radars [1], [2]. Also, the satellite-based 
precipitation estimates provide an opportunity for both 
hydrologists and meteorologists to improve the forecasting of 
extreme events, such as flood warning, landslide detection, 
typhoon monitoring, and drought diagnosis, at the large scale 
[3]-[6]. In practice, the near real-time satellite precipitation 
products (SPPs) are more appropriate for these 
hydrometeorological predictions relative to post-real-time 
research-quality SPPs. However, the near real-time SPPs 
normally have larger errors and uncertainties than the post-real-
time products [7]. Therefore, it is important to develop effective 
error correction methods for further improving the data 
accuracy of mainstream SPPs in real time, which will 
significantly enhance their application potentials especially for 
natural hazard warning. This is also one of the primary science 
objectives of the Global Precipitation Measurement (GPM) 
mission (https://www.nasa.gov/mission_pages/ 
GPM/science/index.html). 

The scientific understanding of error features of satellite 
precipitation estimates is essential to establish the error 
adjustment model (EAM) in correction methods [8]. Currently, 
a considerable number of literatures have revealed the error 
characteristics of SPPs at regional [9]-[15] or global [5], [16], 
[17] scales. Some other studies found that the retrieval errors of 
satellite precipitation are closely related to topography [18]-
[21], seasonality [22]-[24], climate types [25], [26], and rain 
rates [27], [28]. However, a comprehensive investigation with 
regard to the relationships between retrieval errors and four 
factors (i.e., topography, seasonality, climate type, and rain rate) 
is still lacking. This limitation hinders establishing a fairly 
trustworthy EAM, which can thoroughly consider various 
geographic and climatic factors to effectively reduce the errors 
of satellite precipitation estimates. By analyzing the error 
components of GPM-based passive microwave and infrared 
sensors, on the first time, we comprehensively revealed the 
dependency of retrieval errors of satellite precipitation on the 
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topography, season, and climate type over mainland China [29]. 
Furthermore, a power function relationship between the 
retrieval errors and the logarithm of rain rates was subsequently 
proposed in the extended study [7]. As a continuation of 
previous works, this study primarily aims at establishing an 
effective EAM to correct the hourly near-real-time global 
satellite mapping of precipitation (GSMaP-NRT) by analyzing 
the function relationships between satellite retrieval errors and 
multiple factors in details. 

In practice, many previous literatures have proposed various 
correction methods to improve the accuracy of the near real-
time SPPs for enhancing their potentials in natural hazard 
forecasting [30]-[38]. However, these correction methods 
suffer from different defects: (1) some methods strongly depend 
on the ground observations in real time and their effectiveness 
is also closely related to the observed accuracy [31], [32], [38]; 
(2) some methods employed the satellite-derived soil moisture 
products to correct satellite precipitation estimates in real time, 
but these ways may introduce new error sources and degrade 
the retrieval quality of original SPPs [33], [37]; (3) others only 
selected single or few factors but neglected some crucial ones 
associated with retrieval errors, leading to the fundamental 
algorithmic defects in establishing the EAMs [35], [36]; (4) 
some real-time error correction methods work for only reducing 
systematic error [30]-[32], [34], but the major error component 
of current satellite products is random error [8]. Merging 
different precipitation products is an effective way to enhance 
the quality of SPPs [39]-[43]. However, it cannot correct 
satellite precipitation estimates in real time.  

Chen et al. [7] found that there exist substantial errors and 
larger uncertainties in the currently operational near real-time 
satellite precipitation products, such as GSMaP-NRT [44], 
GSMaP-MVK (Global Satellite Mapping of Precipitation 
Microwave-IR Combined Product) [45], IMERG-Early and 
IMERG-Late (Integrated Multi-satellite Retrievals for GPM 
Early and Late runs) [46], and PERSIANN-CCS (Precipitation 
Estimation from Remotely Sensed Information using Artificial 
Neural Networks Cloud Classification System) [47], [48]. 
Among them, GSMaP-NRT is one of the standard GPM-based 
SPPs, which can be widely applied for monitoring various 
natural disasters. To further improve the retrieval accuracy, the 
GSMaP team of Japan Aerospace Exploration Agency (JAXA) 
also developed another near real-time product, namely the 
gauge-calibrated GSMaP-NRT (i.e., GSMaP-Gauge-NRT) by 
integrating the Climate Precipitation Center unified gauge-
based precipitation data (CPCU; [49]). However, a preliminary 
assessment indicated that this gauge-adjusted precipitation 
product still has relatively large errors and needs to be revisited 
in the future studies [50]. 

Consequently, here we proposed a novel real-time error 
adjustment method that considers four impacting factors to 
precipitation errors to correct for the hourly GSMaP-NRT 
precipitation estimates in real time. The improved ill-posed 
least squares (ILS) algorithm was applied in this new method. 
We expect that this work can help data developers to upgrade 
the present correction methods, and provide end-users a useful 
postprocessing step for available near real-time products when 

the high-quality satellite precipitation estimates are required in 
their hydrometeorological applications. 

II. DATASETS 
Two GPM-based hourly satellite precipitation estimates, 

including GSMaP-NRT and GSMaP-Gauge-NRT, were 
utilized in this study. The processing algorithm of the near real-
time GSMaP suite mainly includes the following five steps: (1) 
the Dual-frequency phased array Precipitation Radar (DPR) 
data were used to calibrate passive microwave (PMW) 
retrievals; (2) the morphing technique adopting the cloud 
movements computed by two successive infrared images was 
used to generate the precipitation estimates from PMW 
retrievals. Note that only temporarily forward cloud movement 
was used in this step; (3) a Kalman filter method was applied to 
refine precipitation rates from morphing technique; (4) a 
microwave-IR merging module was applied to produce the 
hourly global precipitation estimates in near real time, namely 
GSMaP-NRT; (5) GSMaP-NRT was adjusted by the error 
parameters derived from the historical daily-daily data pairs of 
satellite retrievals (GSMaP-NRT itself) and gauge observations 
(i.e., CPCU) to generate the gauge-adjusted product GSMaP-
Gauge-NRT. 

In our study, the hourly GSMaP-NRT was first corrected by 
the proposed method to produce a set of new precipitation 
product ILSF-RT, which was then intercompared with both 
GSMaP-NRT and GSMaP-Gauge-NRT to validate the new 
method. An observation network of over 30,000 conventional 
rain gauges covering mainland China (Fig.1a) was employed to 
calibrate and validate the error adjustment models in the new 
method. This reference dataset has a high spatiotemporal 
resolution (hourly, 0.1⁰; [32]). Here, we selected one complete 
year of 2015 with GSMaP-NRT and ground observations for 
calibration and two years of three datasets (two near real-time 
GSMaP products and gauged observations), from April 2017 to 
March 2019, for validation, considering the GSMaP-Gauge-
NRT V7 data available starting from April 2017.  

III. METHODOLOGY 

A. Real-time error correction method 
The EAM that can accurately describe the error features of 

satellite retrievals is essential to customize error correction 
methods. Our previous studies have found that the errors of 
satellite-based precipitation estimates are closely related to four 
crucial factors, i.e., seasonality, topography, climate type, and 
rain rate [7], [8], [29]. However, the comprehensive 
relationships between satellite retrieval errors and these four 
factors are still not investigated, and the expected EAM was 
also not established. As an extension of our previous works, this 
study attempts to comprehensively consider four crucial factors 
associated with retrieval errors and effectively correct the near 
real-time multi-satellite precipitation estimates by the EAM 
derived from historical satellite-gauge data pairs.  

In the new correction method, we design a better expression 
for topography using the standard deviation of elevation (SDE, 
see Fig.1b) to substitute the original average elevation. 



Additionally, we continue to adopt the original division scheme 
of climate types (Fig. 1a) proposed in Chen et al. [29], which 
divides mainland China into four climate types (humid, semi-
humid, semi-arid, and arid).  

Fig. 1. (a) Spatial map of rain gauges (over 30,000) and four climate types 
(humid, semi-humid, semi-arid, arid) used in this study, (b) map of the standard 
deviation of elevation (SDE), over mainland China. 

The retrieval errors (E) can be simply calculated by satellite 
rain rate (S) minus ground observations (G). The specific 
equation can be written as: 

E = S − G                                    (1) 
To clearly demonstrate the links between E and two crucial 

factors (i.e., topography and rain rate), we divide satellite-gauge 
datasets into 16 categories according to four seasons and four 
climate types over mainland China. Fig.2 shows the 3-D views 
of E as a function of SDE and rain rate in the GSMaP-NRT 
estimates. Interestingly, it is found that there exists an apparent 
spatial plane function relationship between the errors of 
GSMaP-NRT and two crucial factors (i.e., topography and rain 
rate) for all the sixteen categories. Based on such function 
relationships, we established sixteen different EAMs to adjust 
the GSMaP-NRT precipitation estimates. The main formulae of 
proposed EAMs can be defined as: 

E𝑖𝑖,𝑗𝑗 = a𝑖𝑖,𝑗𝑗 ∗ S + b𝑖𝑖,𝑗𝑗 ∗ SDE + c𝑖𝑖,𝑗𝑗                  (2) 
where a𝑖𝑖,𝑗𝑗 , b𝑖𝑖,𝑗𝑗 ,  and c𝑖𝑖,𝑗𝑗  are the key parameters of the EAMs. 
The subscripts i (i = 1, 2, 3, 4) and j (j = 1, 2, 3, 4) represent the 
four seasons (i.e., spring, summer, autumn, and winter) and the 
four climate types (i.e., humid, semi-humid, semi-arid, and 
arid), respectively. By substituting Eq. (1) into Eq. (2), the 

sixteen function relationships in the proposed EAMs can be 
expressed as: 

𝐺𝐺𝑖𝑖,𝑗𝑗 = �1 − a𝑖𝑖,𝑗𝑗�𝑆𝑆 − b𝑖𝑖,𝑗𝑗𝑆𝑆𝑆𝑆𝑆𝑆 − c𝑖𝑖,𝑗𝑗                  (3) 
Eq. (3) can be transformed to a simple formula: 

𝐺𝐺 = 𝐴𝐴𝐴𝐴                                   (4) 
where 𝐴𝐴 = [S, SDE, 1] , 𝐴𝐴 = [1 − a, −b, −c]𝑇𝑇 . Compared 
with those error adjustment modules in prior literatures, the new 
EAM proposed here can better depict the relationships between 
the retrieval errors of satellite precipitation and the four crucial 
factors (seasonality, topography, climate type, and rain rate). 

 
Fig. 2. Scatter plots (3-D views) of retrieval errors of GSMaP-NRT as a function 
of topography (SDE) and satellite rain rate (S) for 16 categories according to 
four seasons (spring, summer, autumn, winter) and four climate types (humid, 
semi-humid, semi-arid, arid) over mainland China. Note that n indicates the 
sample sizes for different cases. 

The key parameter (X) for above Eq. (4) can be normally 
calculated by the least square method. The parameter estimates 
are denoted by 𝐴𝐴�𝐿𝐿𝐿𝐿, which can be computed as: 

𝐴𝐴�𝐿𝐿𝐿𝐿 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝐺𝐺                         (5) 
However, in our numerical experiments, we found that the 

condition number of matrix A𝑇𝑇𝐴𝐴 is beyond 1,000, which causes 
its determinant close to zero, resulting to the matrix A𝑇𝑇𝐴𝐴 
seriously ill-conditioned. This leads to instability of calculating 
solution of least square method. Therefore, an ILS approach 
was applied to perform the parameter estimates of X for the 
sixteen EAMs. The equation of the  𝐴𝐴�𝐼𝐼𝐿𝐿𝐿𝐿can be expressed as: 

𝐴𝐴� = (𝐴𝐴𝑇𝑇𝐴𝐴 + 𝛼𝛼𝛼𝛼)−1𝐴𝐴𝑇𝑇𝐼𝐼𝐿𝐿𝐿𝐿 𝐺𝐺                      (6) 
where α denotes ridge parameter, which can be calculated by L-
curve method (refer to Hansen et al. [51] for more details); 
while the symbol I is an identity matrix. By the item of αI, Eq. 
(6) can reduce the degree of ill condition for the matrix 𝐴𝐴𝑇𝑇𝐴𝐴 and 
provide reliable parameter estimates for the EAMs. 

Through the preliminary data analysis before EAM 
construction, we found that some outliers, which might be 
caused by the larger errors of satellite estimates and/or gauge 
observations, are mixed in the training samples. This will result 
in a serious deviation between the parameter estimate of the ILS 
and its ‘truth value’. Consequently, a robust ILS (RILS) method 
was proposed to remove the outliers before starting the 
aforementioned parameter estimation for the sixteen EAMs. 
The procedure of RILS-based outlier elimination mainly 
includes the following four steps: 

1) the ILS method was used to compute the initial 
parameter estimates of the sixteen EAMs (i.e., Eq. 
(2)). 

2) the distances (𝑑𝑑) between the selected points and the 
fitting plane were calculated by substituting 

 



parameter estimates, S, SDE, and E into the 
following equation: 

𝑑𝑑 = �𝐿𝐿×𝑎𝑎�+𝐿𝐿𝑆𝑆𝑆𝑆×𝑏𝑏�−𝑆𝑆+𝑐𝑐�
2 2

                       (7) 
�𝑎𝑎� +𝑏𝑏� +1

3) thus, the standard deviation of the distance (σ) could 
be worked out using the following formula pair: 

𝑑𝑑 = 1 ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖𝑛𝑛

� (8)
�∑𝑛𝑛                            

𝑖𝑖=1(𝑑𝑑𝑖𝑖−𝑑𝑑�)2𝜎𝜎 =
𝑛𝑛−1

4) if 𝑑𝑑𝑖𝑖 < 3𝜎𝜎, the corresponding training sample will be 
retained to join the following training. Otherwise, it 
will be eliminated as an outlier.  

Next, the remaining samples will be directly applied to train 
the EAMs, which then generate the new precipitation product 
ILSF-RT. Fig. 3 displays the entire flowchart of the new 
method and its main processing steps are briefly described as 
follows: 

1) calculating the errors of satellite estimates. One 
complete year of both GSMaP-NRT (S) and ground 
observations (G) were used as the training samples in 
calibration. The errors between S and G were 
computed by Eq. (1).  

2) establishing sixteen EAMs based on the analyses of 
four crucial factors. All the satellite-gauge data pairs 
were spatiotemporally separated into 16 categories 
over mainland China according to four seasons and 
four climate types. Thus, 16 EAMs of retrieval errors 
as a spatial plane function of topography (SDE) and 
satellite rain rate (S) were established (refer to Fig. 2 
and Eq. (2)).  

3) removing the outliers. This step has been clearly 
explained in above RILS-based outlier elimination. 

4) calibrating the model parameters of EAMs. The ILS 
method was employed to compute the parameter 
estimates of sixteen EAMs (i.e., Eq. (4)).  

5) generating the new precipitation product ILSF-RT. 
The new method primarily adopts the ILS method to 
solve the parameter estimates of the EAMs that 
consider four factors, and then the errors and biases 
of GSMaP-NRT are reduced based on Eq. (4) and Eq. 
(6). Finally, ILSF-RT product was comprehensively 
intercompared with GSMaP-NRT and GSMaP-
Gauge-NRT over mainland China for validation 
using various evaluation indices. 

̂

̅

 
Fig. 3. The flowchart of the new real-time error correction method. 

B. Statistical indices in evaluation 
To quantify the performance of the new proposed method, 

we used seven statistical indices including correlation 
coefficient (CC), root mean squared error (RMSE), normalized 
root mean squared error (NRMSE), relative bias (RBIAS), and 
three types of error components (hit bias, miss bias, and false 
bias). The CC was used to denote the agreements between 
evaluated precipitation product and ground observations. 
RMSE describes the absolute errors of evaluated precipitation 
datasets. As a supplement metric, NRMSE was used to assess 
the accuracy of evaluated precipitation products in different 
rain rates. RBIAS and three independent components were used 
to measure the systematic biases of precipitation estimates. The 
corresponding formulae of all above statistical indices are 
provided in Table I. 

TABLE I 
NINE EVALUATION SCORES USED IN THIS STUDY FOR VERIFYING THE 

PROPOSED APPROACH. 

Evaluation scores Equation Perfect 
value 

Correlation Coefficient 
(CC) 

CC

=
∑ (𝐺𝐺𝑖𝑖 − �̅�𝐺)(𝑆𝑆𝑖𝑖 − 𝑆𝑆̅)𝑛𝑛
𝑖𝑖=1

�∑ (𝐺𝐺𝑖𝑖 − �̅�𝐺)2𝑛𝑛
𝑖𝑖=1 × �∑ (𝑆𝑆𝑖𝑖 − 𝑆𝑆̅)2𝑛𝑛

𝑖𝑖=1

 

1 

Root Mean Squared 
Error (RMSE) RMSE = �

1
𝑛𝑛
� (𝑆𝑆𝑖𝑖 − 𝐺𝐺𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 

0 

Normalized Root 
Mean Squared Error 

(NRMSE) NRMSE = 
�1
𝑛𝑛∑ (𝑆𝑆𝑖𝑖 − 𝐺𝐺𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

G�
 

0 

Relative Bias (RBIAS) BIAS =
∑ (𝑆𝑆𝑖𝑖 − 𝐺𝐺𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝐺𝐺𝑖𝑖𝑛𝑛
𝑖𝑖=1

× 100% 0 

Hit Bias (HB) HB =
∑ (𝑆𝑆𝐻𝐻𝑖𝑖 − 𝐺𝐺𝐻𝐻𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

∑ 𝐺𝐺𝑛𝑛
𝑖𝑖=1

× 100% 0 

Miss Bias (MB) MB =
∑ (−𝐺𝐺𝑀𝑀𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

∑ 𝐺𝐺𝑛𝑛
𝑖𝑖=1

× 100% 0 

False Bias (FB) FB =
∑ (𝑆𝑆𝐹𝐹𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

∑ 𝐺𝐺𝑛𝑛
𝑖𝑖=1

× 100% 0 
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IV. RESULTS 

A. General performance 
Table II lists the statistical summary of GSMaP-NRT, 

GSMaP-Gauge-NRT and ILSF-RT for four seasons over 
mainland China during the calibration and validation periods. 
Generally, almost all the statistical indices show a significant 
improvement of ILSF-RT over GSMaP-NRT and GSMaP-
Gauge-NRT, only except for slightly lower CC values than 
those of GSMaP-Gauge-NRT. The evident improvement of 
GSMaP-Gauge-NRT product in CC score might benefit from 
daily-scale correction. Relative to original GSMaP-NRT, the 
corrected ILSF-RT still exhibits a clear improvement in 
correlation for the calibration and validation periods. As for 
 

TABLE II 
THE SUMMARY OF THE THREE EVALUATION INDICES (I.E., CC, RMSE, AND RBIAS) FOR THE THREE PRODUCTS (I.E., GSMAP-NRT, GSMAP-GAUGE-NRT, AND 
ILSF-RT) OVER FOUR SEASONS FOR THE CALIBRATION AND VALIDATION PERIODS. 

 
Metric 
results 

Spring Summer Autumn Winter 
Period GSMaP-

NRT 

GSMaP-
Gauge-
NRT 

ILSF-
RT 

GSMaP-
NRT 

GSMaP-
Gauge-
NRT 

ILSF-
RT 

GSMaP-
NRT 

GSMaP-
Gauge-
NRT 

ILSF-
RT 

GSMaP-
NRT 

GSMaP-
Gauge-
NRT 

ILSF-
RT 

Calibration 

CC 0.26 0.42 0.41 0.41 0.45 0.42 0.18 0.36 0.34 0.16 0.41 0.37 
RMSE 
(mm) 1.7 0.9 0.7 1.2 1.1 1.0 1.6 0.9 0.7 1.7 0.7 0.3 

RBIAS 
(%)  33.2 7.1 -7.5 -1.5 1.5 1.2 9.0 12.3 -9.4 61.0 36.4 -21.5 

Validation 

CC 0.32 0.40 0.38 0.33 0.38 0.37 0.22 0.38 0.32 0.13 0.30 0.30 
RMSE 
(mm) 1.3 0.9 0.7 1.8 1.4 1.2 1.4 0.9 0.7 1.1 0.6 0.3 

RBIAS 
(%)  51.4 18.2 16.0 12.8 9.1 -7.7 20.1 37.9 1.5 37.3 40.2 -15.8 

The boxplots of the RMSE and RBIAS indicators were used 
to further analyze and compare the performance of three SPPs, 
as shown in Figs.4-5. Fig.4 illustrates the numerical distribution 
of RMSE for four seasons and four different climate types. 
Generally, ILSF-RT with relatively lower RMSE outperforms 
other two SPPs for all the cases. In particular, ILSF-RT exhibits 
significant improvements for cold seasons and arid areas during 
both the calibration and validation periods. Additionally, the 
boxplot results of RBIAS in Fig. 5 also suggest similar results 
in that ILSF-RT with lower relative biases has the best 
performance among three evaluated SPPs, although larger 
RBIAS values appear in winter season and arid areas. This 
might be attributed to two major reasons: (1) fewer precipitation 
events and smaller rainfall amounts during the cold season, and 
(2) larger uncertainties induced by using sparse in-situ 
observations over arid areas in the evaluation [6], [29]. In 
summary, above statistical analysis from two different indices 
shows the new proposed method can effectively reduce the 
seasonal and climatic retrieval errors of GSMaP-NRT to some 
extent and substantially improve its data accuracy. 

B. Spatiotemporal comparison 
The spatial maps of the differences of RMSE between 

GSMaP-Gauge-NRT and GSMaP-NRT and between ILSF-RT 
and GSMaP-NRT for different seasons give a clear indication 
of where these datasets are performing better or worse (see Fig. 
6). During the calibration period, one can see that the 

other two evaluation scores (RMSE and RBIAS), ILSF-RT that 
has the smallest errors and biases for most cases apparently 
outperforms both GSMaP-NRT and GSMaP-Gauge-NRT. 
Moreover, the new method seems to be more effective in those 
autumn and winter months. Taking the autumn of validation 
period for instance, the value of RMSE remarkably decreases 
from 1.41 mm hr-1 before correction to only 0.65 mm hr-1 after 
correction, a 53.9% drop. Also, the value of RBIAS decreases 
from 37.2% of GSMaP-NRT and 40.18% of GSMaP-Gauge-
NRT to -15.75% of ILSF-RT in winter. Overall, we can 
conclude that the new proposed method can substantially 
improve the data accuracy of hourly GSMaP-NRT estimates 
and even performs better than the gauged adjustment scheme 
employed in GSMaP-Gauge-NRT. 

differences of RMSE between GSMaP-Gauge-NRT and 
GSMaP-NRT are below 0% over most areas of humid areas, 
meaning that the error correction method employed in GSMaP-
Gauge-NRT product reduces the accuracy of the original 
GSMaP-NRT product in such areas. As for the new method, we 
found that the differences of RMSE between ILSF-RT and 
GSMaP-NRT are exceeding 0% over most areas of mainland 
China, suggesting that the new error correction method 
improves the accuracy of the original GSMaP-NRT to some 
extent. Especially, the new method enhances the accuracy of 
the original GSMaP-NRT over 80% in Sichuan province where 
has multiple topography classes. Besides, the accuracy 
improvement of the new error correction method displays 
seasonal and regional features. 

During the validation period, similar to the calibration period, 
the differences of RMSE between GSMaP-Gauge-NRT and 
GSMaP-NRT are below 0% over most areas of humid areas, 
especially for autumn and winter seasons. This means that the 
error correction method used in GSMaP-Gauge-NRT degrades 
the performance of the original GSMaP-NRT product. 
Oppositely, the new proposed error correction method 
improves the performance of the original GSMaP-NRT 
evidently over most areas of mainland China due to the 
corresponding RMSE difference values exceeding 0%. It 
should be noted that the new error correction method also 
improved the accuracy of GSMaP-NRT more than 80% in 
Sichuan province where has multiple terrains. This further tests 
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the ability of the new method on reducing the rainfall errors of 
GSMaP-NRT in complex terrain areas, which is chiefly 
attributed to the impact of topography information having been 
considered in our correction method. In summary, the spatial 
analyses from Fig. 6 demonstrates that the new method 
effectively reduce the retrieval errors of GSMaP-NRT for 
various terrains and over different seasons and climate areas 
and ILSF-RT generally exhibits the best performance among 
three evaluation products. 

 
Fig. 4. The boxplots of the RMSE score for the three products (i.e., GSMaP-
NRT (grey), GSMaP-Gauge-NRT (red), and ILSF-RT (green)) in four seasons 
(i.e., spring (first column), summer (second column), autumn (third column), 
and winter (fourth column)) over four climate types (i.e., humid (first line), 
semi-humid (second line), semi-arid (third line), and arid (fourth line)). Note 
that some boxplots are not represented entirely because of their larger ranges. 

 
Fig5. As in Fig. 4 but for RBIAS. 

 
Fig. 6. Spatial maps of RMSE differences (lines A and C) between GSMaP-
Gauge-NRT and GSMaP-NRT and (lines B and D) between ILSF-RT and 
GSMaP-NRT for four seasons: spring (first column), summer (second column), 
autumn (third column), and winter (fourth column). Note that ①, ②, ③, and 
④ represent humid, semi-humid, semi-arid, and arid type areas, respectively.   

Fig. 7 exhibits the comparison of time series of RMSE for 
these three evaluated products during the calibration and 
validation periods. Generally speaking, both ILSF-RT and 
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GSMaP-Gauge-NRT effectively reduce the error and bias of 
original GSMaP-NRT. But apparently, ILSF-RT exhibits the 
best performance among three products, suggesting that the 
new proposed method might benefit to enhance the application 
potentials of GPM-based satellite precipitation estimates in 
real-time natural hazard warning. 

 
Fig. 7. Time series of RMSE for the three products (i.e., GSMaP-NRT, GSMaP-
Gauge-NRT, and ILSF-RT) over the entire mainland China for the calibration 
and validation periods. Note that the blank parts indicate that the benchmark is 
missing. 

C. Performance for different rain rates 
To help diagnose the performance of ILSF-RT at different 

rain rates, the hourly rainfall events were classified by setting 
fixed thresholds of 0.2, 0.4, 0.6, 1, 2, and 5 mm as documented 
in Chen et al. [7]. We found that the values of RMSE metric 
increase with increasing rain rates, which is not conducive to 
the performance comparisons among different products in 
different precipitation intensities. Therefore, we selected the 
normalized RMSE (NRMSE) to replace RMSE metric in 
investigating the accuracy of the three products in various rain 
rates. To ensure the reliability of the verification results, the 
sample sizes of various rain rates for both calibration and 
validation periods are given in Figs. 8a-b. It can see that the 
sample sizes of all the categories are over 2.0e+6, suggesting 
that these sufficient samples support the reliability of the results. 
Besides, the intensity distributions of errors and biases of three 
hourly precipitation products, including NRMSE and RBIAS, 
are shown in Figs.8c-d. 

The intensity distribution of hourly rainfall amount provides 
unique insights into the error dependence on rain rates. Fig. 8c 
and 8d clearly show that ILSF-RT has relatively lower values 
of NRMSE than GSMaP-NRT and GSMaP-Gauge-NRT at 
most ranges of rain rates except for over 5 mm hr-1, suggesting 
that the correction method chiefly improve the data quality of 
GSMaP-NRT at low-medium rain rates. As for RBIAS metric, 
ILSF-RT has smaller values of RBIAS than GSMaP-NRT and 
GSMaP-Gauge-NRT at the rain rates less than 1 mm hr-1, while 
relatively larger RBIAS over 1 mm hr-1 (Fig. 9c), during both 
calibration and validation periods. But it is worth noting that 
GSMaP-Gauge-NRT also exhibits larger RBIAS than GSMaP-
NRT at the range during the validation period. The results imply 
that the gauge-based correction methods applied in both ILSF-
RT and GSMaP-Gauge-NRT have limitations at high rain rates. 
This might be due to the overcorrection of the error adjustment 
methods, leading to reducing the performance of original 
satellite product in RBIAS score at such rain rates. Based on the 
results of the two scores (i.e., NRMSE and RBIAS) shown in 
Fig. 8, it can be concluded that positive and negative biases in 

GSMaP-NRT cancel each other to some degree because the 
absolute errors of GSMaP-NRT seems not better than those of 
two gauge-adjusted products over the medium-high rain rates 

-1(>1 mm hr ).  

 
Fig. 8. (a-b) The sample sizes of six rain rate categories for the calibration and 
validation periods, (c-d) the NRMSE of the three products (i.e., GSMaP-NRT, 
GSMaP-Gauge-NRT, and ILSF-RT) at 0.1° spatial and hourly temporal 
resolution under different rain rates, (e-d) the RBIAS of the three products (i.e., 
GSMaP-NRT, GSMaP-Gauge-NRT, and ILSF-RT) at 0.1° spatial and hourly 
temporal resolution under different rain rates. 

V. DISCUSSION 

A. Which error components are effectively corrected by the 
new method? 

Performance evaluation of using sole RBIAS metric 
sometimes may be misleading because RBIAS value may be 
from the average of different error components with inverse 
signs [8]. For instance, the values of the NRMSE metric for the 
two corrected products (i.e., ILSF-RT and GSMaP-Gauge-NRT) 
are smaller than those of the GSMaP-NRT in the rain rates 
ranging from 1 mm hr-1 to 5 mm hr-1. However, their RBIAS 
values are higher than those of GSMaP-NRT (see Fig. 8). Tian 
et al. [23] proposed an error decomposition technique to avoid 
above-mentioned situation. This technique is to separate the 
RBIAS into hit bias, miss bias, and false bias and is a fairer 
method to analyze and compare the performance of different 
precipitation products. In this study, this technique was used to 
compare the performance of the three products and answer the 
question of which error components are corrected by new 
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proposed method. 
The spatial maps of the RBIAS and its three independent 

components (i.e., hit bias, miss bias, and false bias) for the three 
products over mainland China are given in Fig. 9. Overall, both 
the gauge-adjusted method used in GSMaP-Gauge-NRT and 
the new method significantly reduce the rainfall bias of the 
GSMaP-NRT over semi-humid areas. Especially, the new 
method remarkably reduces the rainfall bias in northeast China, 
central humid regions, and eastern coast areas where GSMaP-
Gauge-NRT still has obvious overestimations. The lower total 
biases of ILSF-RT precipitation product mainly owe to the 
correction of hit component by new proposed method. One can 
see that the hit biases of ILSF-RT fall between -40% and 20% 
in most areas, suggesting that the new proposed method 
effectively reduces the hit biases (> 40%) of the GSMaP-NRT. 
However, there is minor improvements in the false and miss 
error components. One should be noted that the reduction of 
missed precipitation for satellite precipitation products needs to 
fuse rain gauge observations and other rainfall inputs to come 
true. In other words, both the error adjustment method 
employed in GSMaP-Gauge-NRT and the new proposed 
method (or existing other error correction methods, for example, 
Tian et al. [30]) cannot substantially reduce miss biases. 

 
Fig. 9. Spatial maps of the total bias and its three components for the three 
products (i.e., GSMaP-NRT, GSMaP-Gauge-NRT, and ILSF-RT) at 0.1° 
spatial and hourly temporal resolution over mainland China for the validation 
period. Note that ①, ②, ③, and ④ represent humid, semi-humid, semi-arid, 
and arid type areas, respectively. 
B. What are advantages and limitations of the new method? 

Currently, most studies focused on the fusion of multi-source 
data (including ground-based observations, satellite 
information, and/or reanalysis data) to improve the quality of 
satellite precipitation estimates, such as GSMaP-Gauge [52], 
IMERG-Final [46], MSWEP [39], [40], and so on. These 
merged products have lower biases than those near real-time 
satellite precipitation estimates. However, they cannot be 
obtained in near real time mainly due to waiting for necessary 
rain gauge observations. Another issue is that the quality of 
these merged products relies on rain gauge observations to 
some extents. Compared with these merged methods, the new 
method proposed in this study has the advantages in that 
corrects the rainfall errors in real time without using real time 
obtaining rain gauge observations, and it can satisfy the 
requirement in high accuracy for the near real-time applications. 

Given that the near real-time satellite precipitation estimates 

contain larger errors and uncertainties, GSMaP team has 
developed a gauge-adjusted GSMaP-NRT precipitation product, 
GSMaP-Gauge-NRT. Nevertheless, a preliminary evaluation 
executed by Lu and Yong, [50] found that GSMaP-Gauge-NRT 
still has large errors. Meanwhile, several studies have focused 
on investigating the real-time bias correction methods [30], 
[32]-[34], [37]. Tian et al. [30] proposed a Bayesian scheme to 
reduce the bias of satellite-based precipitation estimates in real 
time. Nevertheless, Bayesian scheme works for only reducing 
systematic errors, yet Chen et al. [8] pointed out that the total 
errors of satellite precipitation estimates are dominated by 
random errors. On the other hand, some literatures used satellite 
soil moisture data to reduce the errors of satellite precipitation 
estimates in near real time [33], [37]. However, these schemes 
might introduce the new error sources due to the large errors 
inherent in satellite soil moisture. Besides, some error 
adjustment models missed some crucial factors associated with 
errors [35], [36]. 

Compared with the error correction methods proposed in the 
above-mentioned literatures, the new proposed method entirely 
considers the relationships between retrieval errors and four 
crucial factors, which reduces the errors more effectively in 
theory. In practice, the new method substantially reduces the 
rainfall errors of the original GSMaP-NRT, and its product 
ILSF-RT shows better performance than GSMaP-Gauge-NRT. 
Meanwhile, the new method is designed to reduce the 
systematic and random errors existing in satellite precipitation 
estimates. More importantly, this method is rather substantial 
improvements in cold seasons (spring and winter) and over 
western China. The reduction in errors is limited for these 
seasons and these areas in previous studies [30], [37]. 
Additionally, our proposed method can solve the parameter 
estimates of EAMs without a large number of samples. 
Theoretically, the parameter estimates of each EAM can be 
derived using only three samples. For instance, the training 
samples are only 45 for the winter season in arid areas (see Fig. 
2), the new method still significantly improves the accuracy of 
the GSMaP-NRT and its product performs the best among three 
products. Despite that the new method shows great advantages 
for error corrections in real time relative to existing real-time 
error correction methods, it also cannot reduce missed 
precipitation and is limited improvements in reducing false 
errors. In addition, this method has another common problem 
also inherent in the existing algorithms, that is, underestimating 
the rainfall volume in the rain rates over 1 mm hr-1. 

VI. CONCLUSION 
In this study, we systematically investigated the relationships 

between the retrieval errors of satellite precipitation estimates 
and four crucial factors including topography, seasonality, 
climate type, and rain rate over mainland China. Based on the 
spatial plane function relationships adaptive for 16 different 
categories, we proposed a novel bias adjustment method to 
correct the hourly GSMaP-NRT estimates in real time. Last, we 
comprehensively evaluated the performance of new method by 
comparing the corrected satellite precipitation dataset ILSF-RT 
and original GSMaP product suite (i.e., GSMaP-NRT and 
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GSMaP-Gauge-NRT) over the entire mainland China. Results 
drawn from our analyses may be substantially benefit the GPM-
based retrieval algorithms to produce more reliable and 
accurate satellite precipitation estimates for the satellite 
precipitation community. The major conclusions are 
summarized as follows: 

Generally speaking, ILSF-RT product performs the best 
among three products in terms of RMSE, and RBIAS scores 
(see Table II), meaning that the new proposed method is 
effective for reducing the rainfall errors of original GSMaP-
NRT. Meanwhile, the new method effectively reduces the 
errors of GSMaP-NRT associated with seasonality and climate 
(see Figs. 4-5). In particular, this new proposed method 
evidently improves the data quality over arid areas and cold 
seasons (spring and winter), which improves the application 
potentials of GSMaP-NRT in such areas where no ground 
observations are not available. 

In spatial analysis, the new method improves the accuracy of 
the original GSMaP-NRT over most areas for both calibration 
and validation periods. In particular, the new method 
effectively reduces the errors of the original GSMaP-NRT over 
most areas of humid areas where the error correction method 
employed in GSMaP-Gauge-NRT degrades the accuracy of the 
original GSMaP-NRT in most cases. Notably, the new method 
evidently improves the accuracy of GSMaP-NRT for Sichuan 
province where has more mountainous terrains. That is due to 
the new proposed method comprehensively considering the 
relations between retrieval error and topography.  

ILSF-RT shows the highest accuracy in all rain rates except 
for the total rain rates exceeding 5 mm/h. However, both new 
method and existing methods have a common issue, that is, 
increasing the degree of the underestimation in the rain rates 
over 1 mm hr-1. This is due to the overcorrection of those 
methods for such rain rates. 

An error decomposition technique was used to explore which 
error components are corrected by the new method. The results 
show that the new error correction method mainly corrects hit 
error component, whereas both error correction method used in 
GSMaP-Gauge-NRT and new method cannot correct the 
missed precipitation. 

Overall, the new method proposed in this study considers the 
relationships between retrieval errors and four crucial factors, 
and the verification results have proved the effectiveness in 
reducing the retrieval errors. Looking into the ongoing GPM era, 
the new error correction method could be selected by algorithm 
developers as an important part of processing modules for 
GSMaP-Gauge-NRT, and meanwhile be used by end-users as a 
postprocessing step to improve the quality of satellite data 
before using satellite data for the near real-time 
hydrometeorological applications. 
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